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ABSTRACT 

Inside-out algorithms provide the ability to generate all hexahedral meshes by first introducing a structured mesh that bounds the 
complete body modeled, then secondly by manipulating the exterior of this structured mesh to fit the specific boundary of the 
body.  Such algorithms generally provide high quality meshes on the interior of the body but suffer with lower quality elements 
on the boundary.  The sculpting algorithm as presented here, addresses the difficulty in forming quality near boundary elements 
in two ways.  The algorithm first introduces new methods to define an initial structured mesh and second uses collapsing 
templates to reposition boundary elements to conform to the geometric topology prior to smoothing elements to the boundary.  
The algorithm also provides the ability to subdivide the original object into sub-regions such that complex geometries can be 
meshed.  
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1. INTRODUCTION 

Automatic all-hexahedral meshing of arbitrary three-
dimensional geometries continues to receive significant 
attention. Over the past few years meshing efforts have 
developed numerous algorithms to produce a conformal all-
hexahedral mesh.  These methods include generalized 
sweeping [1,2], block decomposition [3], tetrahedral based 
[4,5], whisker weaving [6] and inside-out grid based [7,8,9].   

None of these methods have proven to be an all-
encompassing algorithm and each has drawbacks to their use.   
Generalized sweeping schemes are very versatile and fast, 
and can have arbitrarily meshed source and target surfaces.  
However acceptable geometries must have a generalized axis 
of symmetry that defines a major sweeping direction.  
Schemes to add minor sweep axes have enhanced this method 
[10,11]. Block decomposition methods produce high quality 
meshes but often are not very automated and require many 
hours of user interaction.  The tetrahedral based schemes 
produce all-hexahedral meshes from an initial all-tetrahedral 
mesh.  The resulting all-hexahedral meshes often suffer from 
poor quality.  Whisker-woven meshes can be very compute 
intensive and also often generate unacceptable interior 

elements.  Grid based algorithms while robust, often generate 
poor quality elements at the boundary often because the 
elements are not generally aligned with the volume boundary.  
The lack of a single hexahedral-meshing algorithm that can 
mesh all the volumes of a given model has spurred the 
development of a new grid based algorithm.  The goal of the 
sculpting algorithm is to provide an automated all-hexahedral 
mesh. 

2. BOUNDING BOX GENERATION 

Grid based, superposition, or inside-out methods all refer to a 
class of algorithms that generate a mesh that is easy to create 
and which covers a sufficient volume of the object with a 
structured mesh.  The initial mesh often comes from using a 
simple mapping algorithm to mesh a volumetric bounding 
box.   Once the bounding box has been defined and the mesh 
has been created, multiple steps are then needed to fit the 
mesh precisely to the volume.  Schneider’s initially proposed 
to eliminate elements from the initial grid that are not 
contained entirely within the volume and then project edges 
from the remaining hexes to the surface of the volume 
[7,8,9].  Others [12] have proposed using all the available 
elements moving the nodes from elements nearest to the 
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volume boundary to produce an interior and exterior meshes 
and discarding the unwanted meshed area.  In either of the 
above mentioned cases the element edges are generally 
parallel to one of the coordinate axis, which is often the 
reason for jagged or uneven elements along the volume 
boundary when the volume is not oriented with a global 
coordinate axis.  Figure 1 provides an example how slightly 
rotating a volume away from its orientation with a global 
coordinate axis will alter the volume mesh dramatically.   
 

 
Figure 1. Distortion of a volumetric meshed used in 
supper position methods once the meshing volume 
is no longer oriented with the coordinate axis [Mesh 
generated with GAMBIT a mesh generation code 
from Fluent Inc.] 

To address the alignment issue shown in Figure 1, the 
sculpting algorithm uses a tight fitting-bounding box that will 
provide the smallest box and same element layer orientation, 
regardless of the volume’s rotation.  While guaranteeing the 
same mesh for all rotations this method does not guarantee 
element layer orientation equal to the geometric boundary 
orientation as shown in Figure 2 (in two-dimensions).      

 

Figure 2. Comparison between a volumetric mesh 
created  

To ensure element layers are aligned with at least one of the 
bounding surfaces of the volume, normals from planar faces 
of the volume are checked for either parallelism or 
perpendicularity with the principal axis of bounding box.  
This check is first performed on the tight bounding box 
because of the super-positioned grid will always be 
consistent.  If the check fails on the tight bounding box the 
volume will be rotated into a position where the largest 
number of planar faces will be aligned with the coordinate 
axis and a coordinate grid is used.  This test will always fail 
when no planar faces exist on the body and a tight bounding 
box is assumed to provide the best results.  
 
Another difficulty that arises when using contemporary 
bounding boxes is the computational time required to identify 
hexes intersecting the volume boundary.  Often when trying 
to mesh a volume such as shown in Figure 3, the time to 
delete the elements that would be created in the middle of the 
volume is greater than the time it takes to capture the volume 
boundary.  To reduce the amount of containment checks 
sculpting uses a series of bounding blocks rather than a single 
large bounding box.  By using smaller boxes and fusing them 
together to form a conformal bounding mesh computational 
time can be saved dramatically. 
 
 

 
 

Figure 3. An example of a volume where meshing 
time is increased due to a large number of 
containment checks in the void area 



 
Figure 4.  Sub bounding boxes used to capture the 

geometry of Figure 3.   

3. HEX COLLAPSING 

Original inside-out meshing routines projected element faces 
onto the boundary whereas sculpting provides a new 
approach to attempt to provide higher quality elements along 
these crucial boundary regions.  For example, Schneider’s [7] 
approach is to initially remove any element that intersects a 
geometry boundary and then project edges to the geometric 
surface to create the boundary elements.  On the other hand, 
sculpting leaves the elements that intersect the volume 
boundary and removes only elements that have no contact to 
the geometry surface.   Sculpting then invokes a process of 
hexahedral collapsing followed by repositioning the 
collapsed nodes to the geometry and completing the process 
by high fidelity smoothing [12].  Figure 4 provides a simple 
comparison between the traditional inside-out algorithm that 
projects edges and sculpting's hex collapsing and node 
smoothing scheme.   
 

 
 

 
 

 
Figure 4. A comparison between projecting 

algorithms and sculpting 

Hex collapsing does inherently invoke some risks that poor 
elements might be created and propagated though the mesh.  
To avoid this a method of intelligent collapsing has been 
implemented to identify collapsible edges.  A collapsible 

edge is defined as a series of boundary edges not included in 
the same element and that each has three hexes and two 
boundary faces attached.  Collapsible edges are found by 
searching the boundary faces for an acceptable edge.  Once a 
starting edge is found, this edge’s neighbors are recursively 
checked to find linkable available edges.  This process 
proceeds until suitable end points are found.  Suitable end 
points are defined as points where the advancing collapsible 
edge cannot find a continuing advancing edge or where the 
next advancing edge remains part of the same element as the 
current edge.  Figure 5 illustrates examples of free end points, 
where no advancing edge is found, and intersecting end 
points, both open and closed.  The left example shows three 
collapsible edges that each have a free end point and an open 
intersection end point.  The right example shows three 
collapsible edges that each have a free end point and a closed 
intersection end point.  In both examples the edges are 
restricted from interacting one with the other to provide 
independence when collapsing.   While in the left example, as 
shown there would be no problem if all three collapsible 
edges were combined and acted together.  If one of these 
edges represented a curve between two planar surfaces, 
sculpting would not allow the collapse because it would 
disrupt the elements used to capture the geometric curve.  For 
this reason they are kept independent.  In the case on the 
right, they are also kept independent, though there currently 
is no useful way of collapsing even one of the edges without 
producing knife elements. 

 

 
Figure 5. Example endpoints for collapsible edges 

Figure 6 helps to describe collapsing on a mechanical part.  
Each of the useful collapsible edges has been highlighted for 
clarity.  All of the selected edges for collapsing in this case 
only have free end points.  There are edges at the front of the 
part where a cylinder protrudes from the surface that has 
open and closed intersections that have not been highlighted.  
If hex collapsing occurred in these regions poor element 
quality would be introduced or element layers would be 
disrupted.   

 
Figure 6. Possible edges available for hex 

collapsing on a mechanical part 



Once all the collapsing edges are found, their interaction 
between each other is compared to avoid conflicts and then 
collapsing continues.  Figure 7 shows how the mesh appears 
after collapsible edges have been chosen and the collapsing 
has taken place.  As seen at the top of the part, there are 
edges that were identified as valid that were not used because 
it would have disrupted the collapsing of a neighboring edge. 

 
Figure 7. Collapsed hexes on a mechanical part 

Figure 8.  Sculpted all hex mesh on a mechanical 
part 

For various exposed hexes collapsing templates have been 
introduced to provide an intelligent collapsing method.  
These templates are shown in Figure 9, where the hex 
primitive is to the left of possible hex collapses. 

 

           
 

 
 

Figure 9. Hex collapsing templates 

4. FINALIZING BOUNDARY CAPTURE 

Once hex collapsing has produced acceptable surface 
elements, node repositioning is the final sculpting step 
required to capture the complete volume boundary.  Node 
repositioning is a simple step provided that the node in 
question can be moved to only one surface.  However, if 
there are multiple surfaces to which the node can be moved, 
difficulties arise and logical decisions must be imposed.  
 
We begin by introducing the two-dimensional situation.  As 
depicted in Figure 10, only nodes outside the volume 
boundary move to the closest point on the nearest surface or 
curve of the volume.  Figure 10 provides a simple example of 
a corner cut out of a two dimensional square.  In general, 
boundary nodes should be moved to the nearest geometric 
surface.  Because the rectangular surface is relatively simple 
and easily contained in a box, most nodes can be aligned 
along the boundary and do not need any adjustment.  
However, along the cutout section there exists one layer of 
elements (i.e. the horizontal row) that matches the surface 
boundary, whereas a vertical layer intersects the boundary 
edge and the respective nodes of these elements must be 
moved to the boundary.  This example demonstrates how 
node movement cannot be simply based on placement to the 
nearest surface.  The node at the re-entrant corner must lie on 
both boundary edges.   
 



 
 
 
 
 
 
 
 
 

 
Figure 10.  Node movement when a node lies on a 

boundary yet needs to move because of 
neighboring node movement  

 
The three-dimensional situation is significantly more 
complex.  Figure 11 shows a cylindrical surface extruded 
from the side of a flat surface.  Note the boundary curve that 
defines the intersection of the cylinder and the flat surface.  
This boundary curve must be matched with the boundary 
nodes that currently lie on the flat surface as a result of 
element layer orientation.  The nodes that will be used to 
capture the boundary curve are shown bolded in Figure 11 
and the solid arrows show the movement that will ensure 
proper nodal alignment.  The curve can be captured in a 
similar manner as was done previously for Figure 10, once 
the elements along the curved surface have properly moved 
to this surface. Capturing the curved surface correctly is not 
difficult away from the boundary curve, but whenever 
elements near the curve need to be adjusted, node movement 
becomes more involved.  There is one bolded node in Figure 
11 that does not lie on the flat surface and has two potential 
movements shown by a solid and a dashed arrow.  The 
dashed arrow describes the shortest distance to the volume 
boundary from the current node location.  As seen, moving 
the node to the closest surface would move the node to the 
same location as an existing node and would interfere with 
neighboring nodes on the surface as well as distort the 
elements that contain the node in question.  The more correct 
move is shown with a solid arrow and yet this distance to the 
proposed node location is nearly 125% greater than the 
distance needed to move the node to the closer surface. To 
properly move nodes, there needs to be a method to consider 
global effects of node movement rather than simply local 
effects. 
 

 
 

 
 

Figure 11. Desired node movement (solid arrow) 
and improper movement (dashed arrow) of a 

cylinder extrude from a flat plane 

 
Currently the sculpting algorithm resolves ambiguous edge 
boundary moves as follows.  
 

1. An optimum (allowable) element size, h, is  
determined. 

 
2.     The distance from each node to all nearby  

surfaces is computed.  The closest (i.e. 
minimum) distance is stored as d, and all 
other distances are saved an ordered array, t. 

 
3.     The distance d is compared to h. If it is  

roughly equal to h, the distances in array t are 
used to find a more suitable placement for the 
node. 
 

4. Alternative moves are assessed by determining 
if the distance to a surface, d, is less than 

3 h, (i.e. 3 h  is the maximum distance a 
node could possibly move if a portion of the 
element is contained inside the volume).  If no 
such move is found, then the node is moved as 
in the previous case. 

 
5. If there is such a move, the neighboring nodes 

are checked to see which surface they have 
moved to.  If none of these neighbors has been 
moved to the boundary, nodes are selected to 
find one that can move to a surface with a d 
less than h.   

 
6. When this fails the original move is used.   

 



This simple heuristic algorithm has worked for many cases 
but is obviously not valid for all cases.  Addition work in 
resolving edge ambiguities is in progress. 
 
 

5. EXAMPLES 

Shown below are examples of geometries meshed using the 
sculpting algorithm.   
 
Figure 12 shows the geometry model and bounding boxes of 
an object that has proven to be difficult to mesh.   Figure 13 
shows the sculpted all hexahedral mesh of the object. 
Figure 14 shows the geometry model of a dumbbell shape 
that has cylindrical cuts made into its end with its defining 
bounding box.  Figure 15 shows the sculpted all hexahedral 
mesh. 
 

6. CONCLUSIONS 

This paper has presented some initial work on a new 
automatic all hexahedral-meshing algorithm named sculpting.  
There still is a large amount of work to do to make this 
scheme totally robust. Only a few collapsing templates have 
been introduced in this paper and more may be needed to 
avoid possible knife element creation.  Sculpting does 
however provided a reasonable alternative to common inside-
out meshing techniques and can create high quality boundary 
elements. 

 

 
Figure 12.    Geometry and bounding boxes of hook 

object 

 
 

Figure 13.  Sculpted mesh of hook object 

 
 

 
Figure 14. Geometry and bounding box of a 
dumbbell shape with cylindrical intrusions 

 
 
 

 

 
Figure 15. Sculpted all hexahedral mesh of 

dumbbell shape 
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